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1. Additional Qualitative Comparisons

Fig [2] shows some additional qualitative comparisons
of our method and state-of-the-art volumetric methods At-
las [2] and VoRTX [5]. The only difference between our
method and the VoRTX [3] is that we use our proposed
3D Ray-contextual Compensated Cost Volume (RCCYV)
as the source of volumetric features instead of the widely-
used back-projected 2D features. Our RC'C'V contributes
to more complete geometries and more clear fine details.

Fig [I] shows additional qualitative comparisons of our
method and the state-of-the-art depth-based method Sim-
pleRecon [4]]. One of the major limitations of the depth-
based methods is the inter-frame inconsistency. Since the
depth maps of different frames are predicted separately, the
fluctuation of their scales is a fundamental problem and
will result in artifacts on surfaces like floors and walls. In
contrast, our method holistically reconstructs the scene and
generates much more clear and more coherent geometries.

2. Additional Discussions
2.1. Information Lost of Depth-based Methods

The cost volume is widely used in depth-based recon-
struction methods. Compared to their existing 3D-2D-
3D pipelines, our end-to-end 3D volumetric reconstruction
from the cost volumes have several fundamental advan-
tages. In addition to the qualitative and quantitative eval-
uations in the main paper, here we analyze a typical case in
the ScanNet2 [1] dataset testing split.

As shown in Fig 8] we visualize the meshes, point
clouds, a sample keyframe, and the matching confidence
distribution of a sample pixel from the state-of-the-art
depth-based method SimpleRecon [4]. The ground truth
depth is 3.3 meters for the sample pixel, which is correctly
reflected by its overall matching confidence distribution.
However, SimpleRecon mistakenly predicts a depth of 2.92

meters due to a glitch in the cost distribution. Since the cost
distribution information is discarded after the depth predic-
tion, the downstream TSDF Fusion [3] is unable to filter out
this outlier and generates a floating surface artifact. In con-
trast, our end-to-end 3D volumetric framework preserves
the cost volume information of all the keyframes and holis-
tically reconstructs clear geometry.

2.2. Use of Reference Frames

The construction of our keyframe cost volumes requires
reference image frames. While most of these reference im-
ages come from the keyframe pool, our method may utilize
slightly more image frames than some volumetric baselines,
depending on the chosen frame selection strategy. To deter-
mine if our improved performance is due to this additional
information, we conducted two experiments. (1) As men-
tioned in Sec 4.3 of the main paper, we apply our RCCV
to the Atlas [2]] baseline. Both the baseline and our modi-
fied Atlas were using all available image frames, ensuring a
fair comparison. (2) We evaluated our baseline VORTX [J5]]
using the same frames as our method and found that the
F1-Score only improved from 0.703 to 0.705, indicating a
negligible difference in performance that does not affect our
conclusions.

2.3. Computation Efficiency

Constructing cost volumes requires additional compu-
tation time and memory compared to existing volumetric
baselines. In our experiment, we find reducing the chan-
nel number of the cost volume from 7 to 1 and the number
of depth planes from 64 to 32 does not noticeably affect
reconstruction quality but will greatly reduce the computa-
tion overhead. The RCCV of R32x1x60x80 only consumes
300K B of the memory and 5ms of the GPU time.

2.4. Limitations

One major limitation of volumetric reconstruction meth-
ods like ours is the update of results is slower than depth-
based methods, which could be alleviated by a proper frag-
menting strategy.
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Figure 1. Additional Qualitative Comparison with Depth-based Method. We compare our method with the state-of-the-art depth-
based method SimpleRecon [4]. The lack of translation parallax in narrow spaces and the texture-less floors will lead to inter-frame

inconsistency and degrade the performance of the depth-based methods. In contrast, our holistic prediction generates a much clear and
coherent reconstruction.
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Figure 2. Additional Qualitative Comparison with Volumetric Methods. Additional comparison of our method with Atlas [2] and the
current state-of-the-art VoRTX [5]] on the ScanNet2 [[1] dataset test split. The only difference with the VoRTX [3] is that we use our RCCV
as the 3D geometric feature representation, leading to significantly clear geometry details.
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Figure 3. Information Lost of Depth-based Methods. This is a sample scene from the ScanNet2 [1] test split. For the sample pixel
with a ground truth depth of 3.3m, the state-of-the-art depth-based method SimpleRecon [4]] predicted a depth of 2.92m, only keeping
the information around the highest matching confidence in the cost volume. The downstream TSDF Fusion [3] is unable to filter out this
outlier and generates floating artifacts. In contrast, we preserve the overall cost volume distribution of all keyframes and holistically predict

a more clear geometry.
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